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Abstract: Multifaceted events in an organizational environment usually need to be assigned probabilities as 

a prerequisite to analytical decision-making. If the decision situation is unique, a lack of relevant historical 

frequency data may preclude use of traditional probability models such as the normal, binomial etc. In this case, 

an individual decision maker (DM) or an informed group of persons can input into a procedure as outlined here to 

determine a probability distribution that leads to the expected values of alternative actions or fair values of 

securities. The individual or group member must decide qualitatively on the extent to which one event is “more 

likely” than another where both events are ranked adjacent (i.e., closest to each other) in terms of likelihood.  

Even though the individual or group members may lack experience in orthodox probability assessment, these 

pairwise “more likely” judgments on the relative likelihood of events are not overly demanding for persons 

familiar with the possible outcomes in the situation under analysis. 
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1. Introduction 

Decision-making under uncertainty can involve sample spaces comprising events that cannot be modeled 

using traditional stochastic processes such as the normal or binomial processes. The likelihoods of these events in 

these complex real-world situations can only be assessed or assigned using the intuition or judgment of the 

decision-maker. The decision-maker (DM) could be an individual or a group of individuals. 

This paper outlines a systematic procedure that takes intuitive or qualitative “more likely” judgments about 

two events at a time, and transforms them into a probability distribution over all possible events that are mutually 

exclusive and collectively exhaustive. Real-world managers need a simple procedure for expeditiously deriving 

probabilities required in everyday decision-making such as calculating the expected value of implementing a 

given action. Such decision-making may sometimes involve events with unique features where judgment must 

substitute for historical data such as relative frequencies of past outcomes. The procedure may also be useful in 

asset valuation situations such as the hostile takeover of a target company. Possible multifaceted or multi-sided 

events in this case would involve a successful outcome at the current offer price, a competing bid from an 

alternative acquirer, raised bids by all potential acquirers, possible veto by national and/or overseas regulators etc. 

The current “fair price” of the target company’s stock would involve probability judgments on dollar outcomes 

influenced by these factors which will usually be unique to the situation in question. 

The procedure, applicable for n ≥ 3 events, is first outlined using objective pairwise likelihoods derived from 
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the binomial process. Subsequently, derivation of a probability distribution is illustrated for an individual making 

subjective “more likely” judgments. Where the DM is a group of individuals, modifications to accommodate 

possible group dynamics in deriving the “more likely” judgments are discussed. Finally, the procedure can also be 

adapted to instigate Bayesian revision of a prior distribution (however determined) in the light of new information 

available to the DM. 

2. A binomial illustration 

The procedure is first illustrated using an example from the binomial process of tossing a “fair” coin five 

times where P(Heads) = P(Tails) = 0.5. There are 2
5 

or 32 possible elementary events but here the experiment’s 

outcome will be defined by the number of heads observed after five tosses. In this case, the effective sample space 

shrinks to six events as in 0, 1, …, 5 heads observed. From the initial sample space of 32 events (all of which are 

equally likely with a “fair” coin) the events 0 heads (5 tails) or 5 heads are the least likely events and each of these 

can occur in only one way. These least likely events are defined as having a likelihood of unity. The next least 

likely events are 1 head or 4 heads (1 tail) and these could occur in 5C1 or 5C4 or 5 ways making either of these 

events 5 times “more likely” than the 0 or 5 heads events. Subsequent calculations follow the same procedure and 

are summarized in Table 1 which shows the resulting probability distribution in the last column. 
 

Table 1  Likelihoods and probabilities for the number of heads in five tosses of a fair coin 

Event No. of ways event can occur Pairwise likelihood Compound likelihood Probability 

0 Heads 1 1 (by definition) 1 = 1 1/32 = 0.03125 

5 Heads 1 1/1 = 1 1*1 = 1 1/32 = 0.03125 

1 Head 5 5/1 = 5 1*1*5 = 5 5/32 = 0.15625 

4 Heads 5 5/5 = 1 1*1*5*1 = 5 5/32 = 0.15625 

2 Heads 10 10/5 = 2 1*1*5*1*2 = 10 10/32 = 0.3125 

3 Heads 10 10/10 = 1 1*1*5*1*2*1 = 10 10/32 = 0.3125 

Total 32  Likelihood total = 32 1.00 

 

In this well-structured problem, the number of ways an event (number of heads) can occur effectively 

determines the probability of that event. Note that the pairwise likelihood relates to the immediately preceding 

event where all events are ordered from least to most likely. The least likely event (first event) is defined to have a 

likelihood of unity. In the above illustration, the pairwise likelihoods (column three) in this example are 

objectively determined from the binomial coefficients (column two). With some events equally likely, the 

resulting pairwise likelihood in these cases will be unity. The initial ordering of events from least to most likely 

allows the decision-maker to determine the pairwise likelihood for events of adjacent likelihood. In particular, this 

minimizes the problem of estimating the extent to which the likelihood of a very unlikely event is exceeded by 

that of a very likely event. For example, the compound likelihoods in Table 1 show the most likely events to be 10 

times “more likely” than the least likely events. This relative likelihood is objectively determined here by the 

binomial coefficients, but could be a difficult judgment for a DM to make in circumstances where objective 

frequencies were not available and qualitative judgments alone are the basis for determining probabilities. The 

procedure outlined here minimizes the need for such difficult judgments. 

The validity of this procedure in a general setting (i.e., no normal, binomial etc. process to generate objective 

probabilities) can be illustrated with a simple example using three events A, B and C. Let the “true” probabilities 
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of these events be a, b and c satisfying the usual probability axioms. Of course, these “true” probabilities can only 

be derived with a fair coin, dice, card set etc. as demonstrated above for the coin tossing example. However, as a 

thought experiment, we can imagine that “true” probabilities exist and are given as above. With a, b and c the 

“true” probabilities, then the “true” pairwise likelihoods are correspondingly b/a and c/b where A, B, C rank the 

events from the least likely event A to the most likely event C. Starting with these pairwise likelihoods, the 

procedure deriving the resulting probability distribution is outlined in Table 2. 
 

Table 2  Validation of the procedure for a three event problem 

Event “true” pairwise likelihood “true” compound likelihood derived = “true” probabilities 

A 1 1 1/(1/a) = a 

B b/a 1*(b/a) = b/a (b/a)/(1/a) = b 

C c/b (b/a)*(c/b) = c/a (c/a)/(1/a) = c 

Total  1/a 1.00 

 

Given the “true” pairwise likelihoods, the procedure correctly reproduces the “true” probabilities. The 

pairwise likelihoods such as c/b are reported as a single value, although the DM may determine this value as a 

ratio of imagined probabilities c and b. This means compensating errors are possible. If b, c are the “true” 

probabilities and b*, c* the imagined probabilities in the reported pairwise likelihood value, it is possible that c/b 

= c*/b*. As a result, the “true” pairwise likelihood is reported with the procedure consequently reproducing the 

“true” probabilities, even if the imagined probabilities do not collectively satisfy the usual probability axioms. 

Imagined probabilities may be most useful in evaluating low probability events as in a 1% chance event followed 

in the ranking by a 5% chance event for a pairwise likelihood value of 5.0. 

3. Unique events and a single decision-maker 

Unique events may preclude use of probability models based on the binomial, normal and other stochastic 

processes. Yet, an individual decision-maker may have intuitive ideas as to the relative likelihoods of possible 

events, and after a sequence of such pairwise judgments, these ideas can be transformed into a probability 

distribution over all events following the procedure outlined above. The use of pairwise judgments to establish 

relative benefits, costs etc. of different options are a well-established practice in decision-making especially for 

the Analytic Hierarchy Process or Analytic Network Process as originally formulated by Saaty (1980, 2005). 

All possible events/outcomes in the situation are first ranked in order of increasing likelihood with the least 

likely event(s) assigned a likelihood of unity. The next least likely event must then be rated as to how much “more 

likely” it is relative to the least likely (immediately preceding) event. For example, a relative likelihood value of 

1.33 for the second least likely event indicates this event to be one third “more likely” than the least likely event. 

Unlike the events in the coin-tossing illustration above, this judgment of 1.33 would be clearly subjective and may 

be idiosyncratic of an individual DM. In deciding on the definitive pairwise likelihood value, it may be 

advantageous for the DM to also consider the reciprocal value of the current “more likely” judgment. This gives a 

likelihood for the less likely event as a percentage of the likelihood of the more likely event. For example, an 

initial pairwise “more likely” value of 1.33 (4/3) means the less likely event has only 75% (3/4) of the likelihood 

of the more likely event. The DM, on reflection, may consider this to be too low with an 80% (4/5) or 83% (5/6) 

percentage better reflecting the DM’s definitive pairwise judgment. As a result, the “more likely” value used in the 

calculations would then reduce to 1.25 or 1.20 as the case may be. For any pairwise judgment, any relative 
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frequency information available from past history concerning the two events could be employed in making the 

definitive “more likely” judgment. 

A procedure for mapping qualitative judgments into quantitative values must be pragmatic and simple to 

follow. The first task in assessing pairwise likelihoods is the “order of magnitude”. Assume the DM assesses the 

“more likely” event of two events to be less than twice as likely as the other event. Following this first judgment, 

the next step is to assess the extent of the “more likely” magnitude as one of slightly more likely, significantly 

more likely or substantially more likely. Table 3 outlines a suggested range of quantitative pairwise likelihood 

values for each of these qualitative judgments. 
 

Table 3  �omenclature for quantifying qualitative likelihood judgments 

Qualifier of “likely” in pairwise comparison of  

likelihood for the “more likely” event 
Pairwise likelihood range Mid-point 

Equally 1.0 1.00 

Slightly more 1.0+ - 1.2- 1.10 

Significantly more 1.2 - 1.8- 1.50 

Substantially more— just less than twice as 1.8 - 2.0- 1.90 

Twice as 2.0 2.00 

 

The above qualitative to quantitative mapping is only suggestive, and perhaps a more detailed nomenclature 

or taxonomy is possible with associated quantitative values. After the slightly, significantly, substantially “more 

likely” decision, the DM must assess the appropriate quantitative value within the suggested pairwise likelihood 

range. These quantitative judgments, which typically will be unique to the situation under analysis, determine the 

resulting probability distribution. 

If the DM initially determines the order of magnitude to be two to three times “more likely”, the mid-points 

of the three appropriate ranges then become 2.10, 2.50 and 2.90 respectively. Ranges for higher orders of 

magnitude are similarly defined. 

As the order of magnitude increases, graduations between the end points may be harder for the DM to 

discern. Small graduations as in “slightly more than five times more likely” reflect a precision of enumeration that 

may not be credible given the intuitive nature of these likelihood judgments. Possibly the only meaningful 

graduation at higher levels of magnitude would be a number such as 5.5 reflecting the judgment of “somewhere 

between five and six times more likely”. 

One qualification to this last conjecture is that if the DM can judge that in 20 trials of the situation where one 

of the two events under comparison occur, the relative frequencies would be say 17 and 3, the likelihood value for 

the more likely event should be exactly 17/3 or 5.667 to three decimals. It may be that some pairwise comparisons 

can be evaluated in this way whereas other comparisons can only be evaluated qualitatively in the first instance. 

Table 3 is a (not necessarily unique) guide for evaluating a likelihood value based only on the DM’s initial 

qualitative assessment on the relative likelihood of two events. 

The following example illustrates the procedure based on a sample space of six events, as shown in Table 4, 

using the nomenclature of Table 3. The least likely event is defined as A, and the most likely event is defined as F. 

Mid-points of the appropriate ranges are used simply to illustrate the procedure. Real-world DMs could choose 

other values in the appropriate ranges better reflecting their subjective likelihood judgments. Probabilities are 

derived as compound likelihood for the event in question divided by total compound likelihood over all events. 
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Table 4  Sample calculations for probability assessment over six events A, B, C, D, E, F 

Event Qualifier for “likely” over preceding event 
Pairwise 

likelihood 

Compound 

likelihood 
Probability 

Percentage 

probability (%) 

A No qualifier for the least likely event at 1.0 1.00 1.0000 0.051118 5.1 

B Slightly more 1.10 1.1000 0.056230 5.6 

C Significantly more than twice as 2.50 2.7500 0.140575 14.1 

D Equally 1.00 2.7500 0.140575 14.1 

E Significantly more than equally 1.50 4.1250 0.210863 21.1 

F Just under twice as 1.90 7.8375 0.400639 40.0 

Total   19.5625 1.000000 100 

 

Using the compound likelihood, the above judgments imply that event F is just over 7.8 times “more likely” 

than event A. Given the imprecision inherent in the “more likely” judgments for unique events, it is suggested that 

a three decimal or percentage probability to one decimal (as in only a 5.1% chance for event A above) would be an 

appropriate level of precision for the resulting probabilities generated by the procedure. 

4. Probability assessment by a group 

The first task of the group is to rank the possible events from least to most likely. If this can be achieved 

unanimously, then the procedure evolves as for an individual DM. For a group, the “more likely” judgment for 

each succeeding event after the least likely event is determined as an average (mean, median, mode, geometric 

mean etc.) of the judgments of the individual group members. 

One caveat for group decision-making is that all members should understand the nomenclature of Table 3 as 

to the meaning of “slightly more likely” etc. First, individuals will differ in their interpretation of what is “slightly 

more likely” versus “significantly more likely”. That is, they could differ in their interpretations as to the meaning 

of “slightly” versus “significantly”. Secondly, for two given events, individuals may have different judgments 

about whether one event is “slightly” or “significantly” more likely than the other event. Of course, the averaging 

process naturally mitigates the effects of either kind of variation in interpretations and judgments across the group. 

If there is not unanimity in the ranking of events, the above procedure can still be followed. However, 

resulting “more likely” values for at least one pairwise comparison will involve an average of values above and 

below unity. Adjustments to eliminate the influence of outliers may be necessary, for example, discarding the 

lowest and highest values. Alternatively, best practice in this situation may be to use an average such as the mode, 

median or geometric mean that eliminates or minimizes the influence of outliers. 

Another option in the absence of group unanimity as to which of two events is the “more likely” is to use 

ordinal judgments only. This option may be preferred if group dynamics result in individual “more likely” 

assessments widely dispersed about unity and/or there is serious discord in the group over the likelihood ranking 

of all events. This initial ranking of events could be determined by majority vote at each point in the ranking. 

Suppose X and Y are two events involved in a disputed pairwise comparison with m group members where x 

members favor X, y favor Y as to which event is “more likely” with z favoring an equally likely judgment. For z ≥ 

0, if x = y, then events X and Y should be judged equally likely with a “more likely” value of unity for the resulting 

pairwise likelihood value. If x > y, then the “more likely” value could be determined as (m-y)/(m-x). This value 

shows the ratio of members not favoring Y (the majority) to those not favoring X and necessarily exceeds unity for 
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x > y. For m = 10, x = 2, y = 0 and z = 8 the pairwise likelihood value will be 1.25 in favor of X over Y. For m = 10, 

x = 5, y = 3 and z = 2, the resulting pairwise likelihood value for X over Y is 1.40, which is less than (say) 5/3 or 

1.67, which ignores some information on the pairwise likelihoods. 

5. Extremely unlikely events 

Some decision situations may involve events that are extremely unlikely as in a “once in a 100-year flood”. 

The consequences of such events may involve extreme value outcomes that should form part of the expected 

value calculus, even though the probability of such an event obtaining is very low. The probabilities of such 

events could be assessed using known, objective odds with remaining events assessed as above and renormalized 

to reflect a proper probability distribution summing to unity over all events. Inclusion of extremely unlikely 

events may require a final probability distribution using more than three decimals in order to calculate an accurate 

expected or “fair” value. 

6. Bayesian revision 

In some cases after derivation of an initial probability distribution, new evidence necessitates a revision of 

probabilities. In this case, the initial probability distribution (possibly derived as above) becomes the prior 

distribution. The consistency of the new evidence with each of the possible events (or states of the world) can then 

be qualitatively assessed using the procedure outlined here. That is, the event (or state) least consistent with the 

new evidence is assigned a likelihood of unity with pairwise likelihoods assigned to remaining events ranked 

according to increased consistency with the new evidence. Clearly, this ranking may be completely different to 

that used in deriving the initial or prior distribution as above. Using the above nomenclature, an event or state 

“slightly more consistent with the new evidence” than the preceding event or state in the ranking would be 

assigned a pairwise likelihood in the range 1.0
+
 to 1.2

-
 as outlined in Table 3. The resulting compound likelihood 

(column 4 in Table 4) becomes the “likelihood” in the usual Bayesian revision procedure where the posterior 

distribution is proportional to prior times likelihood and normalized to unity. An illustration of this procedure is 

contained in Hughes (2009). 
 

7. Conclusions 

The procedure outlined here demonstrates how a sequence of intuitive or qualitative judgments of the relative 

likelihoods of two events can be rendered precise resulting in a probability distribution consistent with these 

judgments over all possible events. As noted, such precision should be limited to percentage probabilities using 

one decimal (at most) to avoid criticisms of spurious accuracy. Precise probability judgments using established 

stochastic models as in the binomial, poisson, normal etc. should be utilized if they are appropriate for the 

situation under analysis. In some cases where both methodologies can be employed, the procedure outlined here 

will result in the same probability distribution as illustrated above for the binomial example. The procedure is also 

applicable to Bayesian revision of a prior probability distribution (however derived) in the light of new evidence. 

The recent development of so-called prediction markets as in Wolfers and Zitzewitz (2008) also leads to 

objective probability assessment reflecting the judgments of many participants. The procedure outlined here is not 

seen as a competitor to these betting/prediction markets. However, betting markets are usually limited to picking a 
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winner from two or more candidates. Real-world decision problems, on the other hand, typically require 

judgments on the relative likelihoods of a number of diverse outcomes each having a different consequence or 

payoff for the DM. The procedure is seen as especially useful for “in-house” probability derivation for a set of 

possibly complex events that may be unique and/or confidential to an individual or to a small group in the 

organization analyzing the situation. The business of the organization could involve engineering, legal, medical , 

mining etc. decision-making. In such cases, the professionals involved in the decision are typically untrained in 

making probability judgments, but may have good intuition as to the extent to which one outcome is “more likely” 

than another based on their past experience and expertise. The procedure outlined here results in the derivation of 

a probability distribution over these events consistent with a sequence of pairwise judgments that do not require 

sophisticated probability judgments of decision-makers. Individuals need only assess qualitatively the extent to 

which one of two events or outcomes is “more likely” than the other (or if both events are “equally likely”) 

without justifying their choice in any way. A defined nomenclature or taxonomy from qualitative judgments to 

numerical pairwise likelihoods allows determination of a probability distribution consistent with those judgments. 

For Bayesian revision, “consistent with the new evidence” replaces “likely” above. 

The procedure does not purport to derive objective probabilities as may be possible with a fair coin etc. and 

probability models such as the binomial process. The procedure will, however, determine probabilities allowing 

calculation of expected values etc. that reflect the current intuition of the DM for the possible events in question. 

At a minimum, the procedure can deliver a benchmark probability distribution that could be further refined to 

better reflect the DM’s final judgments on the probability distribution over all events. 
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